Ja sicher @jensileinchen,
ganz einfache Code wobei ich auf die alte TTNv2 Platform noch mit ABP und Cayenne LPP die Feinstaub und HDC1080 Werten verschickt habe. Nicht CO² weil ich dafür MQTT und Wifi gebraucht habe um diese Werte zu visualisieren.
Die AppSkey und NwsKey is aber camoufliert herunter. Im Blockly einfach zu herstellen.
Der Grund warum ich die alte TTNv2 brauchte ist das für den Sensebox MCU v1.5 das Probleme gab. Wahrseinlich das sensebox.h im Blockly noch nicht up to date mit die neuen Libraries. Die Demo musste schnell gehen auf meiner Stelle, deswegen ABP und TTNv2 das immer stabiel funktioniert.
> #include <SPI.h>
> #include <Wire.h>
> #include <Adafruit_GFX.h>
> #include <Adafruit_SSD1306.h>
> #include "SenseBoxMCU.h"
> #include <lmic.h>
> #include <hal/hal.h>
> #include <CayenneLPP.h>
>
> float p10,p25;
>
> CayenneLPP lpp(51);
>
> #define OLED_RESET 4
> Adafruit_SSD1306 display(OLED_RESET);
>
> // LoRaWAN NwkSKey, network session key
> // This is the default Semtech key, which is used by the early prototype TTN
> // network.
> static const PROGMEM u1_t NWKSKEY[16] = { **xx** };
>
> // LoRaWAN AppSKey, application session key
> // This is the default Semtech key, which is used by the early prototype TTN
> // network.
> static const u1_t PROGMEM APPSKEY[16] = { **xx** };
>
> // LoRaWAN end-device address (DevAddr)
> static const u4_t DEVADDR = 0**xxx**;
>
> // These callbacks are only used in over-the-air activation, so they are
> // left empty here (we cannot leave them out completely unless
> // DISABLE_JOIN is set in config.h, otherwise the linker will complain).
> void os_getArtEui (u1_t* buf) { }
> void os_getDevEui (u1_t* buf) { }
> void os_getDevKey (u1_t* buf) { }
>
> static osjob_t sendjob;
>
> // Schedule TX every this many seconds (might become longer due to duty
> // cycle limitations).
> const unsigned TX_INTERVAL = 60;
>
> // Pin mapping
> const lmic_pinmap lmic_pins = {
> .nss = PIN_XB1_CS,
> .rxtx = LMIC_UNUSED_PIN,
> .rst = LMIC_UNUSED_PIN,
> .dio = {PIN_XB1_INT, PIN_XB1_INT, LMIC_UNUSED_PIN},
> };
> HDC1080 hdc;
>
>
> void initLora() {
> delay(2000);
> // LMIC init
> os_init();
> // Reset the MAC state. Session and pending data transfers will be discarded.
> LMIC_reset();
>
> // Set static session parameters. Instead of dynamically establishing a session
> // by joining the network, precomputed session parameters are be provided.
> #ifdef PROGMEM
> // On AVR, these values are stored in flash and only copied to RAM
> // once. Copy them to a temporary buffer here, LMIC_setSession will
> // copy them into a buffer of its own again.
> uint8_t appskey[sizeof(APPSKEY)];
> uint8_t nwkskey[sizeof(NWKSKEY)];
> memcpy_P(appskey, APPSKEY, sizeof(APPSKEY));
> memcpy_P(nwkskey, NWKSKEY, sizeof(NWKSKEY));
> LMIC_setSession (0x1, DEVADDR, nwkskey, appskey);
> #else
> // If not running an AVR with PROGMEM, just use the arrays directly
> LMIC_setSession (0x1, DEVADDR, NWKSKEY, APPSKEY);
> #endif
>
> #if defined(CFG_eu868)
> // Set up the channels used by the Things Network, which corresponds
> // to the defaults of most gateways. Without this, only three base
> // channels from the LoRaWAN specification are used, which certainly
> // works, so it is good for debugging, but can overload those
> // frequencies, so be sure to configure the full frequency range of
> // your network here (unless your network autoconfigures them).
> // Setting up channels should happen after LMIC_setSession, as that
> // configures the minimal channel set.
> // NA-US channels 0-71 are configured automatically
> LMIC_setupChannel(0, 868100000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
> LMIC_setupChannel(1, 868300000, DR_RANGE_MAP(DR_SF12, DR_SF7B), BAND_CENTI); // g-band
> LMIC_setupChannel(2, 868500000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
> LMIC_setupChannel(3, 867100000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
> LMIC_setupChannel(4, 867300000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
> LMIC_setupChannel(5, 867500000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
> LMIC_setupChannel(6, 867700000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
> LMIC_setupChannel(7, 867900000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
> LMIC_setupChannel(8, 868800000, DR_RANGE_MAP(DR_FSK, DR_FSK), BAND_MILLI); // g2-band
> // TTN defines an additional channel at 869.525Mhz using SF9 for class B
> // devices' ping slots. LMIC does not have an easy way to define set this
> // frequency and support for class B is spotty and untested, so this
> // frequency is not configured here.
> #elif defined(CFG_us915)
> // NA-US channels 0-71 are configured automatically
> // but only one group of 8 should (a subband) should be active
> // TTN recommends the second sub band, 1 in a zero based count.
> // https://github.com/TheThingsNetwork/gateway-conf/blob/master/US-global_conf.json
> LMIC_selectSubBand(1);
> #endif
>
> // Disable link check validation
> LMIC_setLinkCheckMode(0);
>
> // TTN uses SF9 for its RX2 window.
> LMIC.dn2Dr = DR_SF9;
>
> // Set data rate and transmit power for uplink (note: txpow seems to be ignored by the library)
> LMIC_setDrTxpow(DR_SF7,14);
>
> // Start job
> do_send(&sendjob);
> }
>
> void onEvent (ev_t ev) {
> Serial.print(os_getTime());
> Serial.print(": ");
> switch(ev) {
> case EV_SCAN_TIMEOUT:
> Serial.println(F("EV_SCAN_TIMEOUT"));
> break;
> case EV_BEACON_FOUND:
> Serial.println(F("EV_BEACON_FOUND"));
> break;
> case EV_BEACON_MISSED:
> Serial.println(F("EV_BEACON_MISSED"));
> break;
> case EV_BEACON_TRACKED:
> Serial.println(F("EV_BEACON_TRACKED"));
> break;
> case EV_JOINING:
> Serial.println(F("EV_JOINING"));
> break;
> case EV_JOINED:
> Serial.println(F("EV_JOINED"));
> break;
> case EV_RFU1:
> Serial.println(F("EV_RFU1"));
> break;
> case EV_JOIN_FAILED:
> Serial.println(F("EV_JOIN_FAILED"));
> break;
> case EV_REJOIN_FAILED:
> Serial.println(F("EV_REJOIN_FAILED"));
> break;
> case EV_TXCOMPLETE:
> Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)"));
> if (LMIC.txrxFlags & TXRX_ACK)
> Serial.println(F("Received ack"));
> if (LMIC.dataLen) {
> Serial.println(F("Received "));
> Serial.println(LMIC.dataLen);
> Serial.println(F(" bytes of payload"));
> }
> // Schedule next transmission
> os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(TX_INTERVAL), do_send);
> break;
> case EV_LOST_TSYNC:
> Serial.println(F("EV_LOST_TSYNC"));
> break;
> case EV_RESET:
> Serial.println(F("EV_RESET"));
> break;
> case EV_RXCOMPLETE:
> // data received in ping slot
> Serial.println(F("EV_RXCOMPLETE"));
> break;
> case EV_LINK_DEAD:
> Serial.println(F("EV_LINK_DEAD"));
> break;
> case EV_LINK_ALIVE:
> Serial.println(F("EV_LINK_ALIVE"));
> break;
> default:
> Serial.println(F("Unknown event"));
> break;
> }
> }
> SDS011 my_sds(Serial1);
>
> void printOnDisplay(String title1, String measurement1, String unit1, String title2, String measurement2, String unit2) {
>
> display.setCursor(0, 0);
> display.setTextSize(1);
> display.setTextColor(WHITE, BLACK);
> display.println(title1);
> display.setCursor(0, 10);
> display.setTextSize(2);
> display.print(measurement1);
> display.print(" ");
> display.setTextSize(1);
> display.println(unit1);
> display.setCursor(0, 30);
> display.setTextSize(1);
> display.println(title2);
> display.setCursor(0, 40);
> display.setTextSize(2);
> display.print(measurement2);
> display.print(" ");
> display.setTextSize(1);
> display.println(unit2);
> }
Die Blocke: